参与到NASA2020年火星漫游者“毅力号”的发射中

毅力号从位于弗罗里达州的卡纳维拉尔角升空,该航天器的顶部载有联合发射联盟阿特拉斯V的运载火箭,开始了火星的第一段征程。

不管你住在哪里,当我们“倒计时”并将毅力号发射到火星上时,为了参与到我们的行动中,你有机会从一系列活动中选择自己感兴趣的内容。

你可以足不出户地见证NASA将毅力号漫游者发射到火星。今年夏天,这个太空任务从弗罗里达州的卡纳维拉尔角发起。你哪怕在地球的另一边,与发射地点相隔甚远,依然能被邀请参与到这里全球性的、集体的发射倒计时。你能在这里上传自己的视频,在火星上或在漫游者旁边拍一个照片,将视频和照片放在一个可互动的发射数据包中,并通注册将你的名字发送到未来的某个火星任务。

在经历长达七个月的太空飞行后,这个漫游者将会在耶泽洛陨石坑里着陆,这是一个有迷人的地质结构的古老河床。在寻找天体生物学中古微生物生命的证据的过程中,毅力号将在这个陨石坑里采集岩石和土壤样本,为未来把样本带回地球做准备。它也将研究这个行星的气候和地质特性,为人类对火星的探索铺平道路。

此外,毅力号还携带着独创的火星直升机。火星直升机是一次科技能力的证明,标志着人类首次尝试在另一个行星上进行自带动力且可自控的飞行。

“在这些充满挑战的时侯,无论你身处何地,你都可以参与这次发射,帮助把这个“机器人地质学家“实现一项使命,去探索超越地球的火星世界。“NASA喷气推进实验室的交流和教育负责人迈克尔格林主管这个任务,并这样说。

在附近公共聚集受限的情况下,NASA推荐人们在家里虚拟观察发射。你可以用我们的发射工具包学习如何观察发射的全过程。以下是在毅力号发射时分享的一系列选项。

毅力号飞往火星的倒计时

你知道宇宙飞船升空前要数“五、四、三、二、一“吗?你可以录下发射倒计时的视频片段,并将这段视频标记。你的视频片段的编排可以比照NASA的社交媒体的样式,或按照发射日期进行。下面介绍的是如何参与这个活动。

再把你的名字上传到火星上!

毅力号内有携带着三个从全世界上传的1090万个个姓名的美分硬币大小的微芯片,这些人在漫游者上旅行。那些已经报名的人们能得到一个特殊的“现在上飞船”的邮票,并已准备好发射。如果你错过了那个机会,你可尽快报名,以将你的名字传到未来去火星的太空任务上。

火星“照片馆”

当在家虚拟观看火星发射的期间,用我们的虚拟火星照片亭拍一个照片予以纪念。你可以在即将发射毅力号的庞大的阿特拉斯V火箭旁边摆造型,也可以在火星上拍造型照片,或者把自己摆在被陈列在JPL无尘总装车间的火箭的边上拍照。这是为了下载你最喜欢的照片,选择一个背景并下载新图像。

虚拟发射包

为了增强你发射的视觉效果,你应当拿到一本互动的小册子。这个小册子包括毅力号发射的全部信息和这个太空任务的所有照片。你也可以把它以PDF文件的形式下载。

3D的漫游者体验

在可互动的3D体验中,你可以将图像拉近,绕着在毅力号漫游者进行观察。点击、选择图像以便获悉组成这个庞大的漫游者的所有科学工具和仪器,。

观看发射过程并分享你激动的心情

7月30日的发射结束后,我们建议您在NASA的电视上观看此次太空任务的简介和2020年关于火星的其他节目。参见毅力号规划的进度时间表。

火星漫游者在这个红色行星的地表下探测到了原始生命的迹象

火星的漫游者好奇号已经在红色行星上发现了一个潜在的生命迹象——这个星球历史上对于甲烷气体的最高水平的测量结果。

地球上,甲烷主要来源于呼出甲烷的微生物。按照NASA的推测,隐藏在火星地壳下面的生物可能也是最近的测量结果的原因。但是现在请别过于兴奋,因为生命不是对于这个发现的唯一的可能解释。NASA指出,甲烷也能够由岩石和水之间的化学反应产生。

“从我们现在的测量结果来看,我们没有方法去判断甲烷的来源是生物还是地质。”位于绿地、马里兰州的NASA戈达德航天中心的主要研究者保罗马哈菲在一项声明中说道。

况且,这个破纪录的甲烷测量结果和地球上的甲烷含量的平均值相比较也显得更逊色。

好奇号测出的火星上的甲烷含量是10亿方分之21(ppb)。相比较而言,地球的甲烷含量接近1860ppb。

好奇号在过去曾经检测到过甲烷,虽然含量比这次要低很多。火星上甲烷含量的平均值接近于10的9次方分之7。可是根据NASA,甲烷含量确实随着季节的变化而升高或降低。这个模式提供了关于甲烷的来源的潜在的证据。在火星的冬季,甲烷含量减少。在夏天,它们的含量再次增多。科学家们知道,在红色行星的地壳底下躺着一层冰。也许在夏季,冰融化了,向火星的大气层释放出原来被困在冰层中的甲烷其气泡(与地球北极地区的冰冻土层在自己融化的同时向大气层释放出甲烷气体相似)。按照NASA的推测,这些甲烷气泡有可能是生命的遗迹。

甲烷不是火星曾经拥有古代生命适宜的环境的唯一证据。在2012年,好奇号与火星一个河床里识别出了存在了30亿年的水的化学痕迹。其后一年,科学家们在由好奇号于相同地点附近采集的岩石样本中认出了生命的一些化学组成部分。

欧洲航天局的微量气体轨道飞行器已经在火星轨道飞行了一年多了,还没有测量出一点甲烷。通过与微量气体轨道飞行器小队合作,NASA的科学家们希望最终解决火星上甲烷的秘密,并找到这种天然气的来源。

本文来自于

Mars Rover Detects Primordial Signs of Life Under the Red Planet’s Surface

By Isobel Whitcomb, Live Science Contributor | June 24, 2019 03:41pm ET

The Mars rover Curiosity has uncovered a potential sign of life on the Red Planet — the planet’s highest-ever measurement of a natural gas called methane.

On Earth, methane primarily comes from microbes, who breathe out the gas. It’s possible that life-forms hiding under Mars’ crust are also responsible for this latest measurement, according to NASA. But don’t get too excited — yet. Life isn’t the only potential explanation for the finding. Methane is also created by chemical reactions between rocks and water, according to NASA. [9 Strange, Scientific Excuses for Why Humans Haven’t Found Aliens Yet]

“With our current measurements, we have no way of telling if the methane source is biology or geology,” principal investigator Paul Mahaffy of NASA’s Goddard Spaceflight Center in Greenbelt, Maryland, said in a statement.

Plus, even this record-high methane measurement pales in comparison with average methane levels on Earth. Curiosity measured methane concentrations of 21 parts per billion (ppb) on Mars. In comparison, Earth’s methane concentrations are close to 1,860 ppb.

Curiosity has detected methane in the past, albeit at much lower concentrations. The average level on Mars is close to 7 ppm. But methane levels do appear to rise and fall seasonally, according to NASA. And this pattern offers a potential clue about the source of the methane. During the Martian winter, concentrations fall. In the summer, they rise once more. Scientists know that beneath the Red Planet’s crust lies a layer of ice. Perhaps, in summer, ice thaws, releasing trapped bubbles of methane into the atmosphere (similar to the way Earth’s arctic permafrost releases methane into the atmosphere as it melts). These methane pockets could be a relic of ancient life, according to NASA.

Methane isn’t the only evidence that Mars was once hospitable to ancient life. In 2012, Curiosity identified chemical traces of 3 billion-year-old water in a Martian streambed. The following year, scientists identified some of the chemical building blocks of life in a rock sample collected by Curiosity near that same site.

The European Space Agency’s Trace Gas Orbiter has been in orbit around Mars for over a year and has yet to measure any methane. By partnering with the Trace Gas Orbiter team, NASA scientists hope to eventually solve the Mars methane mystery and find the source of the natural gas.

火星上的漫游者在红色行星的地表下探测到了生命原始的迹象

火星的漫游者好奇号已经在红色行星上发现了一个潜在的生命迹象——这个星球历史上甲烷气体的最高浓度的测量结果。

地球上,甲烷主要来源于呼出甲烷的微生物。根据NASA,隐藏在火星地壳下面的生物可能也是最近的测量结果的原因。但是现在请别过于兴奋。生命不是对于这个发现的唯一可能的解释。根据NASA,甲烷也能够由岩石和水之间的化学反应产生。

“从我们现在的测量结果来看,我们没有方法去判断甲烷的来源是生物还是地质原因。”位于绿地、马里兰州的NASA戈达德航天中心的主要研究者保罗马哈菲说道。

再说,即使这个破纪录的甲烷测量结果和地球上的甲烷含量的平均值相比较也显得逊色。

好奇号测出的火星上的甲烷含量是10的9次方分之21。相比较而言,地球的甲烷含量接近10的9次方分之1860。

好奇号在过去已经检测到过甲烷,虽然含量比这次要低很多。火星上甲烷含量的平均值接近于10的9次方分之7。可是根据NASA,甲烷含量确实随着季节的变化而升高或降低。这个模式提供了关于甲烷的来源的潜在的证据。在火星的冬季,甲烷含量减少。在夏天,它们的含量再次增多。科学家们知道,在红色行星的地壳底下躺着一层冰。也许在夏季,冰融化了,向火星的大气层释放出原来被困在冰层中的甲烷其气泡(与地球北极地区的冰冻土层在自己融化的同时向大气层释放出甲烷气体相似)。根据NASA,这些甲烷气体有可能是生命的遗迹。

甲烷不是火星曾经拥有古代生命适宜的环境的唯一证据。在2012年,好奇号与火星一个河床里识别出了存在了30亿年的水的化学痕迹。接下来一年,科学家们在由好奇号于相同地点附近采集的岩石样本中认出了生命的一些化学组成部分。

欧洲航天局的微量气体轨道飞行器已经在火星周围的轨道待了一年多了,还没有测量出一点甲烷。通过与微量气体轨道飞行器小队合作,NASA的科学家们希望最终解决火星上甲烷的秘密,并找到这种天然气的来源。

 

本文来自于:

Mars Rover Detects Primordial Signs of Life Under the Red Planet’s Surface

Mars Rover Detects Primordial Signs of Life Under the Red Planet's Surface
NASA’s Curiosity rover has found a sky-high amount of methane while sampling in Mars’ Gale Crater (shown here).

Credit: NASA

The Mars rover Curiosity has uncovered a potential sign of life on the Red Planet — the planet’s highest-ever measurement of a natural gas called methane.

On Earth, methane primarily comes from microbes, who breathe out the gas. It’s possible that life-forms hiding under Mars’ crust are also responsible for this latest measurement, according to NASA. But don’t get too excited — yet. Life isn’t the only potential explanation for the finding. Methane is also created by chemical reactions between rocks and water, according to NASA. [9 Strange, Scientific Excuses for Why Humans Haven’t Found Aliens Yet]

“With our current measurements, we have no way of telling if the methane source is biology or geology,” principal investigator Paul Mahaffy of NASA’s Goddard Spaceflight Center in Greenbelt, Maryland, said in a statement.

Plus, even this record-high methane measurement pales in comparison with average methane levels on Earth. Curiosity measured methane concentrations of 21 parts per billion (ppb) on Mars. In comparison, Earth’s methane concentrations are close to 1,860 ppb.

Curiosity has detected methane in the past, albeit at much lower concentrations. The average level on Mars is close to 7 ppm. But methane levels do appear to rise and fall seasonally, according to NASA. And this pattern offers a potential clue about the source of the methane. During the Martian winter, concentrations fall. In the summer, they rise once more. Scientists know that beneath the Red Planet’s crust lies a layer of ice. Perhaps, in summer, ice thaws, releasing trapped bubbles of methane into the atmosphere (similar to the way Earth’s arctic permafrost releases methane into the atmosphere as it melts). These methane pockets could be a relic of ancient life, according to NASA.

Methane isn’t the only evidence that Mars was once hospitable to ancient life. In 2012, Curiosity identified chemical traces of 3 billion-year-old water in a Martian streambed. The following year, scientists identified some of the chemical building blocks of life in a rock sample collected by Curiosity near that same site.

The European Space Agency’s Trace Gas Orbiter has been in orbit around Mars for over a year and has yet to measure any methane. By partnering with the Trace Gas Orbiter team, NASA scientists hope to eventually solve the Mars methane mystery and find the source of the natural gas.

全火星地下水系统的首个证据

WatersofMars二十年以前,火星曾经是否有过大量储存的液态水的问题依然备受争议。当前,这个讨论变成了对自然和液态水的体积的评估,例如液态水在哪里以及对于在火星上寻找生命(或生命留下来的物质)的努力有什么暗示。欧洲空间局的科学家们已经公布了火星快车对一些位于火星北半球的封闭的坑洞的观测结果。

作为作家中的领袖和荷兰的乌德勒支大学弗兰克林·萨莱斯说道:“早期的火星是一个充满水的世界,但是当该行星扥气候变化时,这些水从地表退回来了,形成了‘地下水 ’和水池。由于水的规模和角色还存争议,因此在这个研究中,我们记录了这些水,而且我们寻找到了火星上首个全星球的地下水系统的地质的证据。”

在从4000米到4500米深的范围内,被撞击出的坑洞的底部显示了只有水的存在下才会形成的特征。变化的深度的发现说明随着时间的变迁,水的高度改变了,并且渐渐降低。

GlobalGroundwater

坑洞中水的高度与人们所猜想的火星海洋里被提议的水的高度在一条直线,这证明了一个位于北方大平原(显示在上面的图中)的全球性大洋曾经覆盖火星北半球的三分之一。另外一种猜测也是可能的,就是至少两个覆盖全球的大洋在不同时期出现过——一个是连绵而辽阔的,存在于这颗行星早期时,另一个是更小、更浅的、不连续的(或者是河湖系统),有可能在大量火山作用或其他地热的活动加热了受困于地表以下的冰块时短时间地存在过。

火星上的地下水系统的存在可与这些假说兼容。火山口湖通过和我们在地球上看到的相同的地下水系统相互联系在一起。这个共同点是为什么我们相信火星长期地拥有显著的液态水的一个主要因素。我们已经找到了一些岩石,这些岩石在地球上的形成依靠液态水的存在和说明水力驱动侵蚀的地形的大规模特征,而水力驱动侵蚀的地形和液态水的存在曾经对改变火星的地貌景观有显著的作用。

在火星的古代时期转变到赫斯珀里亚时期后,这种活动迅速减少,而赫斯帕里亚时期也是火星被相信已经变得比以前干旱很多的时间。挪亚时代后的亚马逊河时期的特点是寒冷,这是现在仍然影响并支配这个星球的寒冷的火星环境。

已知的是大量的冰仍旧存在于这颗行星的北极,一个湖泊被相信依旧残留在南极的冰盖下面,这个湖泊和地球上南极洲中数英里冰层底下 的液态湖相似。任何依然存在于火星上的液态水在这个时候可能被更好地描述成“在火星里”。液体的痕迹会在地表偶尔出现,但是曾经却没有观测到大量的自由流动的水。

相同的团队也发现了5个特定的坑洞,在这几个坑里含有对于地球上生命的起源很普遍的矿物质,包括各种各样的黏土、碳酸盐与硅酸盐。这种流域有可能成为寻找火星上曾经可能存在的生命的主要位置。

本文来源于:

First Evidence of Global Groundwater System Found on Mars

Twenty years ago, the question of whether Mars ever had large reserves of liquid water was still open to debate. Today, the discussion has shifted to an evaluation of the nature and size of those reserves, where they existed, and what this implies for any effort to find life (or the remains of it) on the Red Planet. Scientists with the European Space Agency have released the results of Mars Express’ observation of some 24 deep, enclosed craters in the northern hemisphere of Mars.

“Early Mars was a watery world, but as the planet’s climate changed this water retreated below the surface to form pools and ‘groundwater,’” says lead author Francesco Sales of Utrecht University in the Netherlands. “We traced this water in our study, as its scale and role is a matter of debate, and we found the first geological evidence of a planet-wide groundwater system on Mars.”

The floor of the impact craters showed features that could only have formed in the presence of water, at depths ranging from 4,000 to 4,500 meters. The various depth findings show that the water level changed and receded over time.

The water level in the craters aligns well with the proposed water level in the Mars ocean hypothesis, which argues that a global ocean situated in the Vastitas Borealis (pictured above) once covered the northern third of Mars. It’s also possible that at least two global oceans existed on Mars at different points — one vast and persistent, during the earliest days of the planet, and a smaller, shallower, and less-persistent ocean (or system of rivers and lakes) that may have temporarily existed when vast amounts of volcanism or other geothermal activity heated ice trapped below ground.

The existence of a groundwater system on Mars is compatible with these hypotheses. Crater lakes would have attached to each other through the same types of groundwater systems we see on Earth. Such commonalities are a major component of why we believe Mars supported significant amounts of liquid water for long periods of time. We’ve found rocks whose formation on Earth depends on the presence of liquid water and large-scale features of the terrain that indicate water-driven erosion once played a significant role in weathering the Martian landscape.

The incidence of such activity drops off sharply after Mars’ Noachian period transitions into the Hesperian, which is also when Mars is believed to have become much drier. The Amazonian period that followed the Noachian is characterized by the cold, arid Martian conditions that still dominate the planet today.

Substantial amounts of ice are known to still exist at the planet’s north pole, and a lake is believed to still remain beneath the south polar ice cap, similar to the liquid lakes under miles of ice in Antarctica on Earth. Any liquid water still existing on Mars might be better described as being in Mars at this point, given the depths at which it would be located. Traces of liquid are occasionally found at the surface, but no significant amount of free-running water has ever been observed.

The same team also spotted five specific craters where mineral ingredients believed to be common to the rise of life on Earth also exist, including various clays, carbonates, and silicates. Such basins could be prime locations for searching for the life that may have existed on Mars.

由于尘埃降落到在火星上,机遇号漫游者仍然是失踪的。

         由于操控者正在准备发起联系,因此这个漫游者还没有报到。Opportunity rover still MIA as dust settles on Mars

我们在火星上看到的最大的一次沙尘暴现在正在逐渐结束,给机遇号将快速得到足够的功率 去重新开启和地球的正常联系带来了希望。从六月至今,这个漫游者已经失去了联系,控制者也在准备好去尝试使漫游者回复NASA的深空探测网发送的命令。

和更大的好奇号漫游者不同,机遇号由太阳能供电。当现在的沙尘暴渐渐包围了整个火星的大气层时,为它提供能量的太阳光逐渐变淡。机遇号已经有几个月不能够得到足够的能量去维持在正常的功能,导致它转换到了休眠模式。一旦它经历了这次在6月的转换,这个漫游者就有了足够的功率和地球上的操作人员实现应答了。

基于大气层的状况,那些操作人员预测在不久的未来那个电源很有可能是充足的。可是,这个漫游者的情况会有一些无法把握的事情,这意味着它将不会像预期的那样进行联系。最简单的可能是沙尘暴在漫游者的太阳能控制板上沉积了足够的尘埃,使它一直远离充足电量的程度。那能够把它从睡眠的返回推延到最后一颗尘埃离开大气层,或者甚至造成电量停留在低的状态,直到附近的风清理了控制板。

当然,那一切假设每件事情都在正常地运行。机遇号的电量很有可能降得太低了,以至于它的机载时钟停止运转。如果是那种情况,那么就没有方法去得知这个漫游者什么时候会努力重新连接建立联系。这是操作人员正在准备给它发送命令去建立联系的缘故之一,到了那时就不能等待漫游者去应答了。

在休眠的过程中,一些电量或联络的硬件设备也有可能出故障了。操作者认为漫游者现在待着的位置会保持足够温暖,能使一些主板上加热器将继续维持部件在被估计的温度或其以上,所以问题基本上是部件是旧的而且它们已经在火星上的14年的条件是艰苦的。

在状况好到能使它产生足够的功率以回应后,NASA将持续尝试去联络漫游者45天。如果在那个时段里没有响应,漫游者的操控者将只会再用几个额外的月份来被动地听它。

Opportunity rover still MIA as dust settles on Mars

The rover has not checked in as controllers are getting ready to trigger contact.

One of the largest dust storms we’ve ever seen on Mars is finally winding down, raising hopes that the Opportunity rover will soon be able to obtain enough power to resume normal contact with Earth. At this point, there’s been no contact with the rover since June, and controllers are getting ready to attempt to get the rover to respond to commands sent over NASA’s Deep Space Network.

Unlike the larger Curiosity rover, Opportunity is solar-powered. And as the current dust storm gradually grew to encompass the entirety of Mars’ atmosphere, the sunlight that powered it gradually faded out. For several months, Opportunity hasn’t been getting enough powerto maintain normal function, causing it to shift into a hibernation mode. Once it underwent this shift back in June, the rover has been waiting for enough power to start checking in with its operators here on Earth.

Based on the atmospheric conditions, those operators expect that power is likely to be sufficient in the very near future. There are a number of uncertainties regarding the rover’s condition that could mean it won’t be making contact as expected, however. The simplest possibility is that the storm deposited enough dust on the rover’s solar panels to keep them from reaching sufficient power levels. That could delay its return from hibernation until the last of the dust is out of the atmosphere, or it could even cause the power to stay low until local winds clean the panels off.

All that, of course, assumes everything’s working normally. There’s a good chance that Opportunity‘s power dropped so low that its on-board clock shut down. If that’s the case, then there’s no way of knowing when the rover will try to re-establish contact. That’s one of the reasons that operators are preparing to send it commands to establish contact rather than waiting for the rover to try to check in.

There’s also the chance that some power or communication hardware failed during the hibernation. Operators expect that the location the rover is in will stay warm enough that some small onboard heaters will keep components at or above the temperatures they’re rated for, so the issue is primarily that the components are old and the conditions have been harsh for the 14 years they’ve been on Mars.

NASA will continue attempts to contact the rover for 45 days after the conditions are good enough for it to generate sufficient power to respond. If there’s no response during that period, the rover’s controllers will just passively listen for it checking in for several additional months.

NASA的洞察号着陆器正在红色行星上正式地开展搜寻地震的工作

This image from NASA's InSight Mars lander, taken on Jan. 7, 2019, shows the SEIS seismograph instrument deployed on the Martian surface to measure Marsquakes.

根据建造此地震仪的法国航天局的说法,这个用于叫做SEIS的内部结构地震实验的超级灵敏地震仪已经通过了最初的实验,目前工作正常。

“这是一个具有历史意义的时刻,也是地球物理学重大的希望,”法国航天局的官员正式说道。“美国的NASA在1975年发射的海盗1和海盗2航天飞船上都带着一个地震仪。其中的一个地震仪的功能失效,另一个地震仪安装在舱面上,由于它对风产生的周围的背景噪声过于敏感而没能检测到火星的震动。SEIS是此类仪器中第一个被放置在火星地表上的。”

洞察号着陆器于11月26日在火星上登陆。12月19日,它用像起重机的机器手臂使SEIS在火星的地表上展开。洞察号将迅速地在SEIS地震仪上面安装一个特殊的盖子覆盖住SEIS地震仪之上,以使它免受火星上的风和极端的温度的侵扰。

法国航天局的官员说道,自从NASA的阿波罗17号在月球上登陆后宇航员哈里森·施密特有效地利用那次任务的阿波罗月球表面实验包——一个含有月球地震仪的传感器组件以来,SEIS是第一个开始在另一个世界里成功地开始工作的地震仪。

SEIS由三个钛球体中的超静谧的振动传感器组成,被置于真空中。一个用来给它的系统供电的电子拴绳和加热器在1月6日被配置好。根据法国航天局,SEIS传感器“正在开始记录每分钟的地面移位”。

洞察号的SEIS是这个着陆器将要调动的两个工具中的一个。另外一个是用来挖掘的一个工具,叫做具有热流和物理特性的探头,或者HP3。执行航天任务的科学家们将要利用敏感的地震仪去检测火星震和陨石的撞击、研究火星内部的结构;利用HP3记录着关于热量如何在这个星球的地表里移动的。为了帮助科学家们研究这个行星的震动,洞察号也要做一个无线电实验。

NASA在2018年5月份发射了85千万美元的洞察号着陆器(它的名字是使用地震勘探、测地学和热量转移的简称)。人们期待它能用至少一个火星年——大约两个地球年的时间来研究火星的内部。

NASA’s InSight Lander on Mars Is Now Hunting for Marsquakes

This image from NASA’s InSight Mars lander, taken on Jan. 7, 2019, shows the SEIS seismograph instrument deployed on the Martian surface to measure Marsquakes.

NASA’s InSight Mars lander is officially hunting for quakes on the Red Planet.

The lander’s ultrasensitive seismometer, called the Seismic Experiment for Interior Structure (SEIS), has passed its initial tests and is working working well, according to the French space agency CNES, which built the lander’s instrument.

“This is a historic moment and a great hope for geophysics,” CNES officials said in a statement. “The two U.S. Viking 1 and Viking 2 missions launched by NASA in 1975 were each carrying a seismometer. One failed to function, while the other — fixed to the deck of the lander — was unable to measure Mars’ seismic activity as it was too sensitive to the background noise generated by winds. SEIS is thus the first instrument of its kind to be placed on the surface of the Red Planet.” [NASA’s InSight Mars Lander: Full Coverage]

The InSight lander touched down on Mars Nov. 26 and used its crane-like robotic arm to deploy the SEIS instrument on the Martian surface on Dec. 19. On Jan. 1, InSight celebrated the new year by testing the seismograph, CNES officials said. InSight will soon deploy a special cover over the SEIS instrument to protect it from the Martian wind and extreme temperatures.

SEIS is the first seismometer to successfully begin work on another world since NASA’s Apollo 17 moon landing in 1972, when astronaut Harrison Schmitt deployed a that mission’s Apollo Lunar Surface Experiments Package — a sensor suite that included a lunar seismometer, CNES officials said. SEIS is made up of three ultraprecise seismic sensors surrounded by a vacuum inside a titanium sphere. An electronic tether to power its systems and heaters was deployed on Jan. 6, and the SEIS sensors “are beginning to record minute ground displacements.” according to CNES.

InSight’s SEIS instrument is one of two tools the lander will deploy on the surface of Mars. The other is a burrowing tool called the Heat Flow and Physical Properties Probe, or HP3. Mission scientists will use the sensitive seismometer to detect Marsquakes, meteorite impacts and to study the structure of the interior of Mars, with the HP3 tool recording observations on how heat moves through the planet’s surface. InSight also carries a radio experiment to help scientists study the planet’s wobble.

NASA launched the $850 million InSight lander (its name is short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) in May 2018. It is expected to study the interior of Mars for at least one Martian year, which is about the equivalent of two Earth years.

NASA的火星好奇号着陆器发现关于神秘的夏普山的证据。

通过对好奇号的一个航行工具进行改进,科学家们已经分析了着陆器下面的岩石的密度,发现它的孔隙度原来所想的要更大。

一个科考队设法改变了一个监测运动状况的设备的用途,该设备帮助NASA的好奇号漫游者导航,它被改造后应用于测量这颗红色行星重力场的变化范围。在这个过程中,科学家们发现着陆器底下的岩石比原来认为的要有更多的小孔。这提供了神秘的夏普山的形成的一些证据,夏普山是一个奇异的山丘,该着陆器一直在盖尔陨坑的中央探索它。

“这个研究有一点像此类型中的第一个。”霍普金斯大学研究报告的作家凯文路易斯说道。“它是在地球和月球之外另一个的行星中第一个引力测线。

在地球上,地质学家通常用这类仪器来研究潜藏在地下的岩石。但是在火星上,研究者只能从绕轨道飞行的航天飞船上获得这种重力的数据,由于航天飞船离火星地表太远而不能拍摄到一张精细的图像。所以即使好奇号漫游者已经在这颗红色星球上待了六年多了,科学家和工程师们一起工作,主要给好奇号提供一个新的仪器。

就像路易斯解释的一样,引力只不过是加速度。好奇号配备有加速计——就像用在苹果手机和其他电子产品上面常用的加速度一样——既可以用来航行,也可以用来得知车的方向。因此,通过使用着陆器的加速计,这个团队能够测量来自各处地下岩层的重力“牵引”。

从亚丽桑大立州大学毕业的一个队员特拉维斯加布里埃尔在一封电子邮件中说道:“引力的测量……给这个行星上一块特别的区域提供一个放大镜。这就是地表上重力的测量在地球地质的工具腰带中是一个主要工具的原因。”所以,通过将好奇号发送去爬位于火星的盖尔陨坑中间一个高3英里(高5公里)的夏普山,这个团队能够发现这个地区的密度以及夏普山在过去是怎样的形成的。

在过去,研究者们认为盖尔陨坑的底部在很久以前有可能埋藏在数英里的岩石下面。

“如果你在月亮上用一个望远镜观察火星,你会注意到在大多数大型坑洞中央的小山峰——盖尔陨坑也是一样的。但是盖尔陨坑中的山峰比个的边缘要更高。这导致科学家们相信他曾经一次性地充满沉积物。”

因此,当好奇号的重力数据表明这个想法是根本不可能的时候,人们都极其惊讶。这是因为即使那里石头的密度极其小,它里面实际的矿物质很稠密。这意味着岩石中充溢着使其变得多孔的空洞。

如果盖尔陨坑曾经被充溢到边缘上,那么就像路易斯所说的那样,样式中的孔隙就会在数吨的石头下面,基本上被挤扁。

加布里埃尔补充说:“我们现在认为盖尔陨坑只是部分地被充满了,引出了‘盖尔陨坑的历史以及远古时期火星赤道上的环境状况是怎样的’这个谜团。”与之不同的是,这个团队认为在更暖和的时候,风可能已经把残骸吹到坑里;在寒冷的夜晚中,风又使残骸被吹到坑外,在数百万年里逐渐形成夏普山。

这可能不将是我们最后一次听到好奇号“新”的重力设备。“在我们的分析中,我们也证实了这个加速计检测火星上的地震的能力,这又是在此类尺度上的又一次科技演示,并可以在未来对火星的地表下面提供全新的洞察力。”加布里埃尔补充道。

这个研究将会于2月1日(周五)发表在杂志《科学》中。

本文来源于:

NASA’s Mars Curiosity rover finds clues about mysterious Mount Sharp

By tweaking one of Curiosity’s navigational tools, scientists have analyzed the density of the rock beneath the rover, finding it’s more porous than previously thought.
curiosity1

This 2016 Curiosity rover selfie shows the vehicle at the “Okoruso” drilling site on Mount Sharp’s Naukluft Plateau. The Martian scene is a mosaic of images taken with the arm-mounted Mars Hands Lens Imager (MAHLI).

A team of researchers managed to repurpose a movement-detecting device that helps NASA’s Curiosity rover navigate and use it to measure variations in the Red Planet’s gravitational field. In the process, the scientists discovered that the rocks beneath the rover are more porous than previously suspected. This offers clues into the mysterious formation Mount Sharp, a strange hill the rover has been exploring in the center of Gale Crater.

“This study is a little bit of the first of its kind,” said study author Kevin Lewis of Johns Hopkins University. “It’s the first gravity traverse on the surface of another planet other than the Earth and the moon.”

On Earth, geologists commonly use such instruments to study rocks lurking beneath the surface. But on Mars, researchers could only get this kind of gravity data from orbiting spacecraft, which are too far away to get a detailed picture. So scientists and engineers worked together to essentially give Curiosity a new scientific instrument — even after more than six years on the Red Planet.

As Lewis explains, gravity is really just acceleration. And Curiosity is equipped with accelerometers — like the ones commonly used in iPhones and other electronics — which are used both to drive and get the vehicle’s orientation. So, by using the rover’s accelerometers, the team was able to measure varying gravitational “tugs” from subsurface rock layers.

“Gravity measurements … provide a magnifying lens into one particular area of the planet’s subsurface,” Travis Gabriel, a team member and graduate student at Arizona State University, said in an email. “This is why surface measurements of gravity are a staple tool in an Earth geologist’s toolbelt.” So, by sending Curiosity to climb Mount Sharp, a 3-mile-tall (5-km-tall) mountain in the middle of Mars’ Gale crater, the team was able to uncover the density of the area’s rocks and how Mount Sharp likely formed.

Martian geology

In the past, researchers thought the floor of Gale Crater was probably buried beneath miles of rock long ago.

“If you look through a telescope at the moon, you’ll notice central peaks in most of the large craters – Gale Crater is no different,”Gabriel said. “However, (Gale’s) central peak stands taller than the crater’s rim, which leads scientists to believe it was filled to the brim with sediments at one time.”

So it came as a surprise when Curiosity’s gravity data showed this idea just isn’t possible. That’s because the rocks there have a surprisingly low density, even though the actual minerals in the rocks are fairly dense. This implies the rocks are riddled with empty pockets that make them porous.

If Gale Crater had ever been filled to the brim, those pores in the rocks would have been essentially “squished out,” as Lewis put it, beneath tons of rock.

“We think Gale Crater was filled only partially, providing a critical piece of the puzzle that is the history of Gale crater and the ancient environmental conditions at the equator of Mars,” Gabriel added. Instead, the team suggests winds may have blown debris into the crater in the warmer day hours and out of the crater during the cold night, gradually forming Mount Sharp over many millions of years.

And this probably won’t be the last time we hear about Curiosity “new” gravity instrument. “In our analysis, we also demonstrated the capacity of the accelerometers to measure martian earthquakes, which is yet another technology demonstration with these units and can provide new insights in the subsurface of Mars in the future,” Gabriel added.

The research will be published in the journal Science on Friday, Feb. 1.

火星上的气候是什么样的?

NASA的一个新机器人正在冒着极端气温的风险去学习有关这颗红色行星的知识。

InSight at work on the Martian surface.

         NASA的一个前往火星的新任务将第一次提供火星每天的气候报告,而现在火星上物体的严寒完全是另一个级别。依据这个任务的网站,目前为止,已记录的温度最高达到15华氏度,最低下降到零下149华氏度。

         洞察号着陆器这个机器人真可怜——它必须待在那里并记录那些令人憎恶的寒流。这个着陆器位于火星赤道北边的埃律西昂平原,NASA称此平原为“一个平坦的、光滑的平面”。根据NASA,洞察号是第一个对所谓火星的“内宇宙空间”进行彻底的研究的机器人,这个研究叫做“它的地壳、地幔和地核”,而洞察号则表示运用地震侦查、测地学和热量转移的火星内部探索。该航天局说,这个研究能够帮助确认火星和其他多岩石的行星——诸如金星、水星和我们的地球是如何在跨越40亿年中形成的。用表明其名称的工具时,这个着陆器将测量这个行星上“维持生命所必需的痕迹”——它的脉搏、反射作用和温度——这每个测量对象能告诉我们火星的构成以及它和地球的构成有什么不同。

An Australian dust devil, which likely has nothing on one of its Martian counterparts.

          这个着陆器使用一组叫做辅助负载子系统的传感器来对火星的气候作出评估,不仅允许我们在这里、在上跟随着此次任务,而且也帮助科学家们改善他们的研究。火星温度的波动能歪曲陆器的地震仪和热量探测器的测量结果,因此持续记录例如气压和风等数据能帮助科学家们判断火星镇是否真得正在发生,或者仪器只是在从不相关的变化中记录“噪音”。辅助负载子系统将在每个火星日——被称为太阳日的每秒钟测量大气压、气温、风和磁场,持续至少两个地球年,允许足够的时间去解释季节的变化。(一个太阳日大约有24小时39分钟长。)

          这个气压传感器在记录低压的旋风——被认为是小尘暴的时证明自己很有用,而小尘暴在火星的地表留下了清晰可见的条痕。根据一个印刷所出版的,我们确实在地球上看见了小尘暴,但是火星尘暴的变化范围却更加壮观——记录的高度在36英里之间,有时甚至达到直径超过300英尺的高度。

         该任务并不标志科学家们第一次作为火星的气象学家,可是它将提供一个外行星领域宽广的气候报告,这个报告也有可能从根本上帮助我们学习到更多关于我们的星球的知识。

本文来源于:

What’s the Weather Like on Mars?

A new NASA robot is braving extreme temperatures to learn about the Red Planet.

A NEW NASA MISSION TO the Red Planet will, for the first time, provide a daily weather report from Mars, where things right now are a whole other level of cold. So far, according to the mission’s website, recorded temperatures have maxed out at 15 degrees Fahrenheit and dipped as far as 140 degrees below zero.

So pity the InSight lander, the robot that has to sit there and register these abominable chills. The lander is located at Elysium Planitia, what NASA calls “a flat, smooth plain” just north of the planet’s equator. InSight—which stands for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport—is, according to NASA, the first robot to conduct an in-depth study of Mars’s so-called “inner space”: “its crust, mantle, and core.” This research, the agency said, can help establish how Mars and other rocky planets—like Mercury, Venus, and our very own—formed over four billion years ago. Using the tools indicated in its name, the lander will measure the planet’s “vital signs”: its pulse, its reflexes, and its temperature—each of which can teach us about Mars’s composition, and how it compares to Earth’s.

The lander uses a group of sensors called the Auxiliary Payload Subsystem (APSS) to take stock of the planet’s weather, allowing us to follow along with the mission from here on Earth while also helping the scientists sharpen their research. Mars’s temperature swings can distort measurements taken by the lander’s seismometer and heat probe, so continuously tracking things such as air pressure and wind can help scientists determine whether a “marsquake” is actually occurring, or whether the instruments are simply recording “noise” from unrelated changes in the weather. APSS will be measuring the air pressure, air temperature, wind, and magnetic field for every second of every Martian day—known as a sol—for at least two Earth years, allowing enough time to account for seasonal variations. (One sol runs for approximately 24 hours and 39 minutes.)

The air pressure sensors have also proven useful in tracking low-pressure whirlwinds known as “dust devils,” which have left visible streaks on the planet’s surface. While we do see our own dust devils on Earth, the Martian variety are, according to a press release, far more imposing—registering heights of between three and six miles and, sometimes, diameters of more than 300 feet.

This mission does not mark the first time that scientists have taken on the role of Martian meteorologists, but it will provide a newly extensive extraterrestrial weather report that, ultimately, may help us learn more about our own planet, too.

NASA的火星好奇号着陆器寻找到关于神秘的夏普山的证据。

通过对好奇号的一个航行工具进行改进,科学家们已经分析了着陆器下面的岩石的密度,发现它比原来想象的要更潮湿。

一个科考队改变了一个监测运动状况的设备的用途,并将其应用于测量这颗红色行星重力的变化范围。在这个过程中,科学家们发现着陆器底下的岩石比原来认为的要有更多的小孔。这提供了神秘的夏普山的形成的一些证据。夏普山是这个着陆器已经在盖尔陨坑的中央探索过的奇异山丘。

“这个研究是这个类型中的第一个。”霍普金斯大学研究报告的作家凯文路易斯说道。“它是除了地球和月球之外的行星中第一个引力侧线。”

在地球上,地质学家通常用这类仪器来研究潜藏在地下的岩石。但是在火星上,研究者只能从绕轨道飞行的航天飞船上获得这种重力的数据,而航天飞船离火星地表太远以至于不能拍摄到一张精细的图像。所以科学家和工程师们一起工作,主要是给好奇号一个新的一起——即使他已经在这颗红色星球上待了六年多了。

就像路易斯解释的一样,引力只是加速度。好奇号配备有加速计——就像用在苹果手机和其他电子产品上面的——既可以用来航行,也可以用来得知车的方向。因此,通过运用着陆器的加速计,这个团队能够测量从地表底下的岩层传来的变化的重力拖船。

从亚丽桑大立州大学毕业的一个队员特拉维斯加布里埃尔在一封电子邮件中说道:“引力的测量……给这个行星上一块特别的区域提供一个放大镜。这就是地表上重力的测量在地球地质的工具腰带中是一个主要工具的原因。”所以,通过将好奇号发送去爬位于火星的盖尔陨坑中间一个高3英里(高5公里)的夏普山,这个团队能够发现这个地区的密度以及夏普山在过去是怎样的形成的。

火星的地质情况

在过去,研究者们认为盖尔陨坑的底部在很久以前有可能埋藏在数英里的岩石下面。

“如果你从一个望远镜中观察月亮,你会注意到在大多数大型坑洞中央的小山峰——盖尔陨坑也是一样的。但是盖尔陨坑中的山峰比个的边缘要更高。这导致科学家们相信他曾经充满沉淀。”

因此,当好奇号的重力数据表明这个想法是不可能的时,简直就是一个惊讶。这是因为那里石头的密度极其小,即使里面实际的矿物质很稠密。这意味着岩石中充溢着使其变得多孔的空洞。

如果盖尔陨坑曾经被充溢到边缘上,那么岩石中的那些小孔就会被挤出。就像路易斯所说的,在数吨的石头下面。

加布里埃尔补充说:“我们现在认为盖尔陨坑只是部分地被充满了,提供了‘盖尔陨坑的历史以及远古时期火星赤道上的环境状况’这一关键板块。”相反地,这个团队认为在更暖和的时候,风可能已经把残骸吹到坑里;在寒冷的夜晚中,风又使残骸被吹到坑外,在数百万年里逐渐形成夏普山。

这可能不将是我们最后一次听说到好奇号新的重力设备。“在我们的分析中,我们也证实了这个加速计检测火星上的地震的能力,而这又是在此类尺度上的另一个科技证明,并可以在未来给火星的地表下面提供全新的洞悉。”加布里埃尔补充道。

这个研究将会于2月1日(周五)发表在杂志《科学》中。

NASA’s Mars Curiosity rover finds clues about mysterious Mount Sharp

By tweaking one of Curiosity’s navigational tools, scientists have analyzed the density of the rock beneath the rover, finding it’s more porous than previously thought.

By Chelsea Gohd  |  Published: Friday, February 01, 2019

A team of researchers managed to repurpose a movement-detecting device that helps NASA’s Curiosity rover navigate and use it to measure variations in the Red Planet’s gravitational field. In the process, the scientists discovered that the rocks beneath the rover are more porous than previously suspected. This offers clues into the mysterious formation Mount Sharp, a strange hill the rover has been exploring in the center of Gale Crater.

“This study is a little bit of the first of its kind,” said study author Kevin Lewis of Johns Hopkins University. “It’s the first gravity traverse on the surface of another planet other than the Earth and the moon.”

On Earth, geologists commonly use such instruments to study rocks lurking beneath the surface. But on Mars, researchers could only get this kind of gravity data from orbiting spacecraft, which are too far away to get a detailed picture. So scientists and engineers worked together to essentially give Curiosity a new scientific instrument — even after more than six years on the Red Planet.

As Lewis explains, gravity is really just acceleration. And Curiosity is equipped with accelerometers — like the ones commonly used in iPhones and other electronics — which are used both to drive and get the vehicle’s orientation. So, by using the rover’s accelerometers, the team was able to measure varying gravitational “tugs” from subsurface rock layers.

“Gravity measurements … provide a magnifying lens into one particular area of the planet’s subsurface,” Travis Gabriel, a team member and graduate student at Arizona State University, said in an email. “This is why surface measurements of gravity are a staple tool in an Earth geologist’s toolbelt.” So, by sending Curiosity to climb Mount Sharp, a 3-mile-tall (5-km-tall) mountain in the middle of Mars’ Gale crater, the team was able to uncover the density of the area’s rocks and how Mount Sharp likely formed.

Martian geology

In the past, researchers thought the floor of Gale Crater was probably buried beneath miles of rock long ago.

“If you look through a telescope at the moon, you’ll notice central peaks in most of the large craters – Gale Crater is no different,”Gabriel said. “However, (Gale’s) central peak stands taller than the crater’s rim, which leads scientists to believe it was filled to the brim with sediments at one time.”

So it came as a surprise when Curiosity’s gravity data showed this idea just isn’t possible. That’s because the rocks there have a surprisingly low density, even though the actual minerals in the rocks are fairly dense. This implies the rocks are riddled with empty pockets that make them porous.

If Gale Crater had ever been filled to the brim, those pores in the rocks would have been essentially “squished out,” as Lewis put it, beneath tons of rock.

“We think Gale Crater was filled only partially, providing a critical piece of the puzzle that is the history of Gale crater and the ancient environmental conditions at the equator of Mars,” Gabriel added. Instead, the team suggests winds may have blown debris into the crater in the warmer day hours and out of the crater during the cold night, gradually forming Mount Sharp over many millions of years.

And this probably won’t be the last time we hear about Curiosity “new” gravity instrument. “In our analysis, we also demonstrated the capacity of the accelerometers to measure martian earthquakes, which is yet another technology demonstration with these units and can provide new insights in the subsurface of Mars in the future,” Gabriel added.

The research will be published in the journal Science on Friday, Feb. 1.

NASA的洞察号火星着陆器正在官方地搜寻这颗红色行星上的的地震。

根据建造这个着陆器的设备的法国航天局,这个着陆器的地震仪SEIS超级灵敏,已经通过了它的室内测试并且正在良好地工作着。

“这是一个充满历史意义的时刻,一个对地球物理学的极大希望,”法国航天局官员在一句话中说道。“由美国的NASA在1975年发射的海盗1和海盗2航天任务每个都带着一个地震检测器。有一个地震仪没有运行,另一个安装在舱面上的地震仪由于它对风产生的背景过于灵敏而没能检测火星震动的活动。SEIS是此类仪器中第一个被放置在火星地表上的。”

洞察号着陆器于11月26日在火星上登陆。在12月19日,它用它像起重机般的机器人的手臂使SEIS在火星的地表上展开。法国航天局的官员说,在1月1日,洞察号通过测试地震仪来庆祝新年。洞察号将迅速将SEIS地震仪上配置一个特殊的盖子,以使它免受火星上的风和极端的温度的侵扰。

自从NASA的阿波罗17号在月球上登陆后宇航员哈里森·施密特有效地利用那次任务的阿波罗月球表面实验包——一个包含一个月球地震仪的传感器套件以来,SEIS是第一个成功地以此方式在另一个世界里成功地开始工作的地震仪。

SEIS由三个钛球体中的超静谧的振动传感器组成,周围是真空。一个电子栓用来给它的系统供电。加热器在1月6日被配置好。根据法国航天局,SEIS传感器“正在开始记录每分钟地面的排水量”。

洞察号的SEIS是这个着陆器将要调动的两个工具中的一个。另外一个是用来挖掘的一个工具,叫做具有热流和物理特性的探头,或者HP3。航天任务的科学家们将要利用敏感的地震仪去检测火星上的地震和陨石的影响、研究火星内部的结构,HP3记录着关于热量如何在这个星球的地表里移动的观测。为了帮助科学家们研究这个行星的震动,洞察号也要做一个无线电实验。

NASA在2018年5月份发射了85千万美元的洞察号着陆器。他被期待去用至少一个火星年,也就是大约两个地球年的时间来研究火星的内部。

本文来自于:

NASA’s InSight Mars lander is officially hunting for quakes on the Red Planet.

The lander’s ultrasensitive seismometer, called the Seismic Experiment for Interior Structure (SEIS), has passed its initial tests and is working working well, according to the French space agency CNES, which built the lander’s instrument.

“This is a historic moment and a great hope for geophysics,” CNES officials said in a statement. “The two U.S. Viking 1 and Viking 2 missions launched by NASA in 1975 were each carrying a seismometer. One failed to function, while the other — fixed to the deck of the lander — was unable to measure Mars’ seismic activity as it was too sensitive to the background noise generated by winds. SEIS is thus the first instrument of its kind to be placed on the surface of the Red Planet.”

The InSight lander touched down on Mars Nov. 26 and used its crane-like robotic arm to deploy the SEIS instrument on the Martian surface on Dec. 19. On Jan. 1, InSight celebrated the new year by testing the seismograph, CNES officials said. InSight will soon deploy a special cover over the SEIS instrument to protect it from the Martian wind and extreme temperatures.

SEIS is the first seismometer to successfully begin work on another world since NASA’s Apollo 17 moon landing in 1972, when astronaut Harrison Schmitt deployed a that mission’s Apollo Lunar Surface Experiments Package — a sensor suite that included a lunar seismometer, CNES officials said. SEIS is made up of three ultraprecise seismic sensors surrounded by a vacuum inside a titanium sphere. An electronic tether to power its systems and heaters was deployed on Jan. 6, and the SEIS sensors “are beginning to record minute ground displacements.” according to CNES.